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Abstract--The effect of a mean fluid velocity gradient on the motion of a small solid particle suspended 
in a turbulent gas is analyzed using Fourier transform techniques. The presence of a mean fluid velocity 
gradient is shown to elevate the streamwise particle velocity variance above the level predicted without 
such gradients; the particle velocity variance in the direction normal to the flow is shown to be only 
indirectly affected by the existence of fluid velocity gradients. When the particle Stokes number is small, 
the streamwise particle velocity variance is elevated above the level predicted in flows without mean 
velocity gradients at a rate which is linearly proportional to both the particle Stokes number, ,,, and the 
ratio of the streamwise velocity gradient to the characteristic frequency of the energy-contaiuing eddies 
in the turbulent field, Glow,. For particles with large Stokes numbers, the dominant mechanism by which 
particle streamwise velocity fluctuations are generated is through random interaction between the particle 
path and the mean fluid velocity gradient. 
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1. I N T R O D U C T I O N  

The motion of particles in uniform flow with no mean velocity gradients has been studied both 
experimentally (Wells & Stock 1983) and analytically (Tchen 1947; Lumley 1957; Csanady 1963; 
Chao 1964; Reeks 1977; Pismen & Nir 1978). All analyses predict that in the absence of velocity 
gradients: 

1. The particle velocity variance cannot exceed the fluid velocity variance for any 
value of the particle Stokes numbers, ~. The Stokes number is defined as the ratio 
of the frequency describing the energetic eddies in fluid turbulence as seen in a 
Lagrangian framework, c%, to the particle response frequency; i.e. ~ = coo/ft. 

2. The particle velocity variance decreases with increasing particle Stokes number. 
3. The particle velocity variance will approach zero at large particle Stokes numbers, 

~>>1. 

The type of behavior described above has been observed in experiments conducted by Wells & 
Stock (1983). The turbulence in these experiments was generated by passing a uniform velocity field 
though a wire screen mesh, which resulted in a turbulence field with minimal mean velocity 
gradients. 

Measurement of the particle velocity variance in naturally occurring flows suggests that the 
analyses cited provide incomplete descriptions of the random particle motions. It is frequently 
reported in the literature that the streamwise velocity variances of particles conveyed in gases exceed 
the velocity variances of the carrier fluid. Recently, Rogers & Eaton (1990) reported that the 
streamwise particle velocity variance for 90-ftm glass beads conveyed in a vertical boundary layer 
exceeds the air velocity variance by approx. 20% throughout the boundary layer; the streamwise 
velocity variance of 50-#m particles was approximately equal to that of the air. In contrast, the 
transverse velocity variances for both size particles were significantly smaller than the variances 
measured for the air. Thus, while the magnitude of the transverse component of the particle velocity 
variance varied in the manner expected on the basis of the cited analyses, the streamwise component 
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exhibits much larger variances. In fact, the streamwise component of the particle velocity variance 
exhibits two features which contradict the predictions of previous analyses: 

1. The streamwise particle velocity variance exceeds the fluid velocity variance. 
2. The streamwise particle velocity variance appears to increase with increasing 

particle Stokes number. That is, larger, less responsive particles exhibit higher 
velocity variances than smaller, more responsive particles. 

Rogers & Eaton (1990) attempt to explain the discrepancy between observations and predictions 
based on Csanady's theory by assuming that the time and length scales of the turbulence as seen 
along the particle path are "stretched" relative to the Eulerian scales. This effectively decreases the 
particle Stokes number. However, both Csanady's original analysis and Rogers' and Eaton's 
modified analysis predict that the maximum possible particle velocity variance is equal to the fluid 
velocity variance and that the particle velocity variance decreases with increasing particle Stokes 
number. Consequently, the modification does not predict the two major qualitative differences 
between the measured and the predicted magnitude of the particle velocity variance. 

Streamwise particle velocity variances which exceed streamwise fluid velocity fluctuations in pipe 
or duct flows have also been reported by Soo et aL (1960), Carlson & Peskin (1975), Tsuji & 
Morikawa (1982) and Steimke & Dukler (1983). Laser Doppler velocimetry measurements in the 
wake of a bluff body suggest that the intensity of streamwise particle velocity fluctuations increases 
with particle size in regions of high shear (Bachalo et  al. 1987). Interestingly, in the cases in which 
the particle velocity variance in the direction transverse to the flow was also measured, the 
transverse velocity fluctuations did not exhibit comparable increases in magnitude. Instead, the 
transverse velocity fluctuations display the qualitative dependence on the particle Stokes numbers 
expected on the basis of published analyses describing the response of particles to turbulent fields. 

The reports of surprisingly large particle velocity variances are sufficiently frequent to warrant 
a search for possible causes. In this paper, the motion of a small solid particle suspended in a gas 
undergoing mean shear will be examined. The analysis will rely on a number of assumptions 
pertaining to the particle dynamic equations, the mean velocity field, and the fluid turbulence 
spectrum as seen by the particle. Because of these assumptions, the results will be qualitative in 
nature. However, the analysis will show that the following behaviors may be possible when the 
carrier fluid exhibits a mean velocity gradient: 

1. The particle velocity variance may exceed the fluid velocity variance. 
2. The particle velocity variance may increase with increasing Stokes number. 

The predictions of this analysis are consistent with the measurements reported by Rogers & Eaton 
(1990), Soo et al. (1960), Carlson & Peskin (1975), Steimke & Dukler (1983) and Tsuji & Morikawa 
(1982). 

2. MOTION OF A SMALL PARTICLE SUSPENDED IN SHEAR FLOW 

We shall consider the motion of a small solid spherical particle suspended in an incompressible, 
unbounded, homogeneous turbulent flow with mean fluid velocity in the x (for streamwise) 
coordinate direction which varies spatially with constant velocity gradient, G (i.e. Ox = Gy, Oy = 0 
and O~ = 0). The fluid turbulence will be assumed to be homogeneous and stationary, and the 
analysis will be restricted to the flows where the Reynolds number based on the particle diameter 
and the velocity difference between the particle and the fluid is ,~ 1. 

The motion of a small solid spherical particle in air may be described on the basis of a simplified 
equation of motion suggested by Lumley (1978): 

P~ + flv~ = Fx + fl(Ox + ux)lx~ [1] 

and 
V,. + flVy = F,. + fl(O,. + uy)lx • [2] 

The quantity fl is referred to as the particle cutoff frequency, which is the inverse of the particle 
response time zp; for a small sphere with diameter a, and particle Reynolds numbers based on the 
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mean velocity difference between the fluid and the particles, I(1D- ~)l, which is ,~ 1, the particle 
response frequency fl is given by the Stokes relation 

t - l =  18 pry ppa 2 • 

F is the body force exerted on the particle. 
These equations are valid provided that the particle Reynolds numbers based on either the mean 

or fluctuating velocity difference between the particle and the fluid are small (Rep <~ 1) and that the 
particle diameter, a, is much smaller than the Taylor microscale describing the fluid turbulence. 
That is, [1] and [2] govern the particle motion when 

a 2 
forRep=10O-C')ll la,~l,  R%~=Av--~a~l and 41,  

v v 

where Av is the r.m.s, difference between the fluid and particle fluctuating velocities and 2 is the 
Taylor microscale. 

Three forcing functions appear on the right-hand side of the particle dynamic equation. The body 
force, F, is deterministic and has a direct effect on the mean particle velocity. Because its influence 
on the particle velocity is indirect, the body force will be neglected in the following analysis. The 
force exerted by the fluid turbulence, flu, acts as a random excitation to the particle motion in both 
the streamwise, or x, and transverse, or y, directions. The third force is that exerted by the mean 
velocity gradient and is represented by the term flQIxp, where the mean velocity is evaluated at the 
current particle position. When the mean fluid velocity varies spatially, the particle samples the 
mean velocity field in a random fashion and the force exerted by the mean velocity on the particle 
becomes random. The chief goal of this analysis is to study the effect of the fl~ term on the particle 
velocity variance. 

It is possible to show that in the absence of body forces and when ~ = 0, that the mean 
transverse particle velocity is equal to zero, i.e. Vy = 0. As a result, the mean transverse particle 
location is also zero Yp=0. Consequently, the mean streamwise particle velocity is also identically 
zero for this case, i.e. Vx = O. 

Substituting the relation for the mean fluid velocity, ~ = Gyp, into the particle dynamic 
equations result in equations for the two components of the fluctuating particle velocity: 

15,, + flVx = f l(Gyp + ux)lx, [3] 

and 

I), + fly, = flu x Ix,. [4] 

Whenever the fluctuating fluid velocity vector u is random, the particle velocity vector v and 
position vector xp will also be random. When the particle velocity vector as a function of time is 
known, the particle position vector may be found by integration: 

fo Xp(t) -- Xp(0) + v(z) d*. [5] 

Evaluation of the expected value of both sides of [4] indicates that the expected value of the 
particle transverse velocity, vy, equals zero at all times. This result may be used to evaluate [5] to 
show that the expected value of the transverse (or y) component of the particle position is constant 
and does not change with time. The particle position at time t = 0 may be defined as zero without 
loss of generality, in which case the expected value of the particle position is also zero at all times. 

3. TRANSVERSE PARTICLE VELOCITY 

The full solutions for the particle dynamic equations [3] and [4] are, in general, time dependent, 
but the transverse particle momentum equations may be shown to be asymptotically stationary in 
the mean and variance provided that the turbulent flow field is homogeneous (Hinze 1962). Which 
is to say that at sufficiently long times, the solution for the transverse particle velocity has a constant 
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mean value and a constant variance. The magnitude of the variance, vyvy, may be found by use 
of a Fourier transform, as suggested by Chao (1964). 

Let the Fourier transform and its inverse be defined as 

V i ( ( D )  = "~  e-i '° 'Vi(t)  dt  and Vi(t)  = ei'°tf"i((D ) do). [6] 
oo - oo 

The transformed transverse particle velocity equation, [4], is 

~' = 13 + i(D fly [7] 

and the spectrum of the transverse component of the particle velocity is 

~2 
S~,,y ((D) = ~ S~,~, ((D); [8] 

where S,~y is the fluid velocity spectrum in the transverse, or y, direction as sampled along the 
particle path and is defined as the Fourier transform of the fluid velocity autocorrelation R~,.., ( r )  
as sampled along the particle path. By definition of the spectrum, the velocity variances may be 
obtained by integrating the spectrum: 

uy uy = S,,., (co) do) [91 
00 

and 

VyOy = Svyt~y (o~ ) d(D = 2 S.y.y (to) d(D. [10] 
. . . .  , 

The properties of this solution can be examined more easily by writing the integral in the form 

1)yUy  "~" S v y v y  ( o 9 )  d w  = 
- oo - oo 

1 + s.,°,((D)d(D, t i l l  

where ~ = (D¢/fl and (D e is the frequency of the energy-containing eddies following a fluid particle. 
Equation [10] is identical to the relation obtained for all components of the particle velocity 

variance in the absence of mean velocity gradients by Tchen (1947) and Csanady (1963); the relation 
by Chao (1964) is similar but contains additional terms which are due to the added mass and Basset 
force terms which appear in the more complete particle momentum equation. Rigorous evaluation 
of [8] and [10] requires specification of the fluid velocity spectrum as sampled along the particle 
path. Because the particle path may only be described in a stochastic sense and is a function of 
both the random particle position and the characteristics of the fluid turbulence field, the problem 
is inherently nonlinear. The difficulties associated with rigorous evaluation of [10] are discussed by 
Lumley (1957) and Chao (1964). 

Csanady (1963) proposed that the solution for the particle velocity [10] be evaluated by assuming 
that the fluid spectrum seen along the particle path is identical to the Eulerian spectrum, which 
was some characteristic frequency (DE" This method did not account for the inherent nonlinearity 
of the problem, but provided qualitative predictions of particle velocity variances. Solutions that 
account for the inherent nonlinearity for the case where mean velocity gradients are absent are 
provided by Reeks (1977), Pismen & Nir (1978) and Nir & Pismen (1979). 

Like the solution of Tchen (1947), Csanady (1963) and Chao (1964), this solution for the 
transverse particle velocity variance [11] does not contain any terms which include the mean velocity 
gradient, G. Thus, the existence of mean velocity gradients does not affect the particle velocity 
statistics in the transverse direction, except in an indirect manner by altering the shape of the fluid 
velocity spectrum or by affecting the path traveled by the particle. The difference between the 
solution presented and that which describes the particle transverse velocity variance in the absence 
of a mean velocity gradient is that the shape of the spectrum S,~,, (co) seen by the particle will differ 
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depending on whether or not a mean velocity gradient exists. The difference in the apparent spectra 
will arise as a result of the appearance of Gyp in the equation describing the particle streamwise 
velocity fluctuation, [3]; this term will affect the streamwise particle velocity and the particle 
position. However, a much more lengthy analysis than presented here is required to determine the 
exact manner in which the form of the spectra is affected by the differences in the path followed 
by a particle. Because the primary focus here is on the qualitative effect of a mean velocity gradient 
on the particle velocity variance, the nonlinearity involved in the evaluation of the particle velocity 
will be ignored. 

It is possible to make some qualitative observations about the behavior of the particle transverse 
velocity variance on the basis of what is known about the particle velocity variance in the absence 
of mean velocity gradients. First, the particle velocity variance will approach the fluid velocity 
variance when the particle Stokes number • approaches zero. The behavior of the particle at the 
large Stokes number limit is more complicated. However, because the fluid velocity spectrum is 
strictly positive, the particle velocity variance in the transverse direction will approach zero at large 
Stokes numbers, provided that the frequency of the turbulence as seen along the particle path does 
not decrease or that it decreases relatively slowly with particle Stokes number. Reeks (1977) 
demonstrated that this is the case for homogeneous isotropic turbulence without mean velocity 
gradients, and that the particle velocity variance will decrease monotonically with particle Stokes 
number when there are no mean velocity gradients. 

Further speculation as to the effect of the mean velocity gradient on the particle transverse 
velocity variance must await analysis of the effect of the mean velocity gradient on the particle 
streamwise velocity variance. 

4. STREAMWISE PARTICLE VELOCITY 

The particle displacement yp which appears in the streamwise equation is nonstationary in 
variance; i.e. the variance in the particle position ypyp grows with time. This complicates analysis 
of the streamwise velocity variance. It is convenient to define a new variable w~: 

[12] 

The quantity wx describes the difference between the velocity of a particle and the mean velocity 
of the fluid at the particle's current position and will be referred to as the particle relative velocity. 
The quantity w~ is of practical importance because it is the quantity measured in experimental 
studies using laser velocimetry to measure the particle velocity variance. This includes the 
experiments by Carlson & Peskin (1975), Steimke & Dukler (1983), Tsuji & Morikawa (1982) and 
Rogers & Eaton (1990). 

Substituting dyp/dt = Vy, into [12] and using [3] results in 

wx+/ w  = - C,v,  [13] 

In the idealized shear layer under consideration, the mean velocity gradient does not vary 
spatially, and the mean fluid velocity fluctuation and particle velocities are equal to zero (i.e. 
z~x = gy = 0). By taking the average of [13] and solving it, the stationary solution for the mean 
relative particle velocity wx can be shown to be zero. Therefore, in this idealized problem the 
ensemble average of the particle velocity conditioned on its location is always equal to the mean 
fluid velocity evaluated at the current particle position. (In real flow situations, spatial variations 
in G or particle-wall interactions would affect both the mean particle velocity and the particle 
velocity fluctuations. Analysis of these factors is complicated and is not attempted here.) 

Comparison of [13] and [4], the equations governing the transverse particle velocity fluctuations, 
reveals that the existence of mean velocity gradients must affect the particle velocity statistics in 
some manner. However, the order of magnitude of the influence of the mean velocity gradient on 
the particle velocity variance must be estimated in order to determine the conditions in which the 
presence of the mean velocity gradient has a detectable effect on the particle statistics. 
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The variance of the relative velocity can be shown to be stationary at long times. Consequently, 
the relative velocity spectrum may be obtained by applying Fourier transform techniques to solve 
the equation for the streamwise particle relative velocity. This results in 

flz /~G G 2 
Sw:x (m) = fl2-y-~m2 S~...~ (o9) f12+o92[S~:.,,(m)+S*~:,,(m)]+f12+m--------zS,,:,,(o), [14] 

where the asterisk denotes the complex conjugate. 
The first term in the particle streamwise velocity spectrum [14] corresponds to the streamwise 

particle velocity spectrum in the absence of velocity gradients. The second and third terms represent 
the effects of velocity gradients on the particle motion. Two fluid-particle velocity cross-spectra 
describing the transverse particle velocity variance appear in the equation; these must be specified 
before the effect of shear on the particle motion may be described. 

Substituting for the cospectrum S.,u, in terms of the fluid spectrum leads to 

(S,:y (09) + S,*vy (09)) = 2 ~e(S~:y (co)) 

- f122~[~e(S.x , , (o9))+~J, 'n(S, , .~  (o))] .  [15] 

Little is known about the quadrature spectral density function Jcn(S,:~(og)). However, the 
imaginary portion of the Fourier transform of a real function must be zero whenever the function 
is symmetric in time; i.e. J ~ f ( o g ) =  0 when f ( z ) = f ( - z ) .  In the absence of evidence to suggest 
that the fluctuations in one direction lead those in the other, the quadrature spectral density will 
be assumed to be equal to zero. The contribution of this term can be evaluated at a later date if 
more is learned about the form of the quadrature spectral density in turbulent shear flows. 

In addition, the integral of the fluid cross-power spectra is equal to the velocity covariance as 
seen along the particle path: 

ffSu~uy(og)do9=UxUy. [16] 

Because the sign of the fluid velocity covariance is generally in the opposite direction to that of 
the mean shear, G, the total area under the envelope of the function - G(S,:~ + S*:~ ) as seen along 
the particle path is expected to be positive. In addition, measurements of the fluid Eulerian 
cross-power spectrum indicate that the product -G(S,x,. + S,*u, ) is positive at o9 = 0 and decays 
at high frequencies (Champagne et al. 1970). The exact s[aape of the fluid Lagrangian cross-power 
spectrum is unknown. But it is reasonable to expect that the magnitude of the Lagrangian 
cross-power spectrum seen along the particle trajectory would have a maximum at low frequencies 
and that it would decay in magnitude at high frequencies in a manner similar to the Eu!erian 
turbulence spectrum. 

The integral of the transverse particle spectrum S,:y, is related to the fluid transverse spectrum 
show in [8]. Consequently, because the fluid velocity spectrum is positive at all frequencies, the 
transverse particle velocity spectrum will also be strictly positive. This ensures that the contribution 
of the third term in [14] to the streamwise particle velocity variance is always positive. 

Substituting the relation for the transverse velocity spectrum [8] results in: 

G ~ G2/~ 2 
~82 + o92 S,yo, (o9) = (/~2 + o92)(fl2 + 02) S~:, (co). [17] 

Substituting [15-17] into [14] allows the particle relative variance to be expressed in terms of the 
fluid spectra as 

W~Wx= I, +12+13, [18] 

where 

I l = 2 yo '~ 1 1 + ( ~ )  2 s"x"x (o9) do9 [19] 
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[2Ol 

13=2  l+ 

The first terms, I,, is equal to the particle velocity variance in a flow without velocity gradients. 
The next two terms correspond to the additional particle velocity variance due to the presence of 
fluid velocity gradient. The term 12 describes the additional level of particle velocity fluctuations 
due to the existence of a fluid velocity covariance, ux uy, which is often large in regions of high mean 
shear. The term /3 describes the degree to which random fluid motions in the transverse flow 
direction lead to increased particle velocity fluctuations. These elevated particle velocity fluctu- 
ations result from the random nature of the particle position, which causes it to sample the mean 
fluid velocity field in a random manner. 

The exact shapes of the spectra in [19]-[21] are not completely understood, both because the 
shapes of spectra in shear flows have not been characterized extensively and because the spectra 
as seen by the particle are distorted by the particle motion. However, general features of the 
turbulence spectrum in homogeneous isotropic turbulence will be described to provide a framework 
for evaluation of these integrals. 

Tennekes & Lumley (1972) suggest that when the Reynolds number describing the fluid flow field 
is large and the fluid turbulence is isotropic, the Lagrangian velocity spectrum may be written in 
the form 

S,,,. = S,: ,  = uM ~--~", [221 

where 

and 

X,,(CO) = 

0 forCo< - -  < 

i :r i Xii(CO) = 0 for < - -  
z/ 

where ,~ is the Lagrangian integral scale of the turbulence, the quantity COd is the viscous cutoff 
frequency and Co is a constant that can be determined by requiring that the integral of the spectrum 
reproduce the velocity variance. 

Tennekcs & Lumley (1972) suggest that the ratio of the viscous cutoff frequency to the frequency 
of the energetic eddies can be approximated using the expression 

COd = 0.31 RX//~. [23] 
tO e 

The characteristic frequency of the energetic eddies is related to the velocity and length scale as 

Cou [24] 
COc= Z ,  

where u is the characteristic fluid velocity fluctuation. 
When the turbulence is isotropic the following relation holds: 

u 2 = uxu,~ = uj, Uy. [25] 
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The requirement that the integral of the spectrum reproduce the appropriate velocity variance, 
[9] and [10], imposes the following condition: 

37t 
C o - 2 ( 2  - ~-~) " [26] 

This spectrum has three major features: (1) it displays a maximum at zero frequency; (2) it decays 
monotonically with frequency; and (3) it has a viscous cutoff frequency above which the spectrum 
is zero. Measurements of some components of the turbulence spectrum tensor in pure shear were 
reported by Champagne et al. (1970). The turbulence spectra in shear flows differed from those 
measured in homogeneous turbulence. 

Nevertheless, the turbulence in shear flows shares some qualitative features with homogeneous 
turbulence including the existence of a cutoff frequency, fO~, and a characteristic frequency, toc. 
Thus, even in a shear flow, the magnitude of the integrals described above depends strongly on 
the characteristic frequency of the energy-containing eddies in the flow, fOe, the particle cutoff 
frequency, ~, and the total area under the velocity spectrum, which is equal to the fluid velocity 
variance, u 2. 

It is convenient to reformulate the three terms 11, 12 and 13 contributing to the particle velocity 
variance in dimensionless form using the particle Stokes number, ~ = og,/fl, and the velocity 
variances and covariances. The three terms become: 

and 

where 

and 

11 = u~uxJ1 (oQ, [27] 

[28] 
/ G \  

Iz= -2[~-~)u-~-y[~o¢2(~ )] 

G 2 
/3 = -2(;)UyUy[~2J3(~)] ,  

fO ~ fOe J~(e)  -- 2u-~S'  1 +~2o52 &x~, (o5) doS' [30] 

fO ~ (2)¢ ~ J z ( ~ )  = 2U~Uy-' (1 + ~zosz)2 .~e(S.~,,y (fO)) do5 [31] 

[29] 

~0 °° (-De J3(=) = 2u-~-~y -I (1 + ~2O52)2 Sux,y (o5) dos. [321 

The frequency of the fluid velocity fluctuations has been made dimensionless using the 
characteristic frequency of the energy-containing eddies o5 = o9/coc. By definition of the power and 
cross-power spectra, [9], [10] and [16], the functions J l ,  "if2 and o#'3--.1 in the limit ~+0.  

Two parameters appear in [17]-[19]. The first, G/fo¢, describes the relative importance of the 
shear forcing term in the particle dynamic equation. The second is the particle Stokes number, =. 
The effect of the Stokes number on the particle velocity variance is somewhat complicated. 
However, it is possible to determine the order of magnitude of the effect of the presence of the mean 
velocity gradient on the streamwise velocity at the limit of low particle Stokes number (= ,~ 1). 

At the low Stokes number limit, where = +0, the streamwise fluid velocity spectrum as seen by 
the particle is often approximated using the Lagrangian fluid spectrum proposed by Tennekes & 
Lumley (1972), which was described above. Evaluation of the integral using this spectrum is 
provided in the appendix; the evaluation assumes that the ratio of the viscous cutoff frequency to 
the frequency of the energetic eddies oJd/coe is infinite. In this case, the particle streamwise velocity 
variance in the absence of shear is ~xW~ = 11 = u--~-~[1 - = n / 4  + O(=2)]. The coefficient for the 
second-order term [i.e. the O(=) term] depends strongly on the postulated form of the spectrum 
as seen by the particle. The numerical value of rc/4 results from assuming that the viscous cutoff 
frequency oJd is infinite. Nonetheless, in the absence of shear, the particle velocity variance is 
expected to decrease with increasing small values of the Stokes number. 
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The spectrum for  the fluid covariance is expected to be bounded and to decrease sufficiently 
rapidly at large frequencies to cause the integral to be bounded. If so, it can be shown that 
12 = -2~t (G/09,)~xU~ to first order in ~t; this quantity is positive in magnitude because the shear rate 
G and the Reynolds stresses u~u~ are always of opposite sign. Consequently, the Reynolds stresses 
cause the streamwise particle velocity variance to increase above the level expected in the absence 
of velocity gradients. The transverse fluctuations enhance the particle velocity variance as 
13 = at2(G/09e)2u-~y, which is a higher-order effect. 

The leading order terms describing the particle velocity variance become 

~vxw---~= 1 +*t(  2 ' G u - ~ y ' u x u x  09~UsUx 4)  + O(~t2)" [33] 

Here the absolute value of the product of the shear rate and the Reynolds stress is shown in order 
to emphasize the tendency of this term to enhance the particle velocity variance. 

In contrast, the transverse velocity fluctuations can be approximated to leading order by 

= 1 -c t  ~ + O(ct2). [34] 
uyuy t4 

Examination of [33] indicates that at sufficiently large levels of shear, the streamwise particle 
velocity fluctuations may increase with at and many exceed the fluid velocity fluctuations. This is 
qualitatively similar to the behavior observed by Rogers & Eaton (1990), and is a behavior which 
has not been predicted by previous analyses of particle response to fluid turbulence. In contrast, 
when there is no mean velocity gradient the particle streamwise velocity variance decreases with 
increasing particle Stokes number. It is interesting to note that the streamwise velocity variance 
may increase with Stokes number when there is a velocity gradient, while the transverse velocity 
variance decreases with Stokes number. This is also qualitatively similar to results reported by 
Rogers & Eaton (1990) and others. 

Analysis in the large particle Stokes number limit is more complicated and full treatment is not 
possible using the linear techniques applied here. However, it is possible to compare the order of 
magnitude of each of the three terms contributing to the particle velocity variance in this limit. 
This analysis will suggest the conditions in which a more complete analysis may be warranted. 

Particles with large Stokes numbers respond only to the lowest frequency fluctuations of the 
spectrum as seen along the particle path. Because of this, it is reasonable to assume that the 
spectrum is constant: 

S(th) ~ S(0). [35] 

Despite the gross oversimplification involved in [35] the approximation is sufficiently detailed for 
the purpose of estimating the relative magnitude of the three terms contributing to the velocity 
variance. The spectra selected share some important features with actual spectra. First, power 
spectra of real functions, such as the fluid velocity variances, are by definition symmetric and the 
real part of the cross-power spectra of a real function is also symmetric. Consequently, the first 
derivative of both the spectra and cospectra is zero at the origin; i.e. dS,,u~ (09)/d09 = 0 at 09 = 0. 
In addition, it may be assumed that the fluid velocity spectra and cospectra are bounded and decay 
at large 09. Consequently, the contribution of the higher frequency components to the particle 
velocity variance will be small relative to the contribution of the components near 09 = 0. The 
mathematical requirement that the integral reproduce the variance may be relaxed in this case 
without affecting the result because only a small portion of the spectrum influences the final results. 

The definition of the Fourier transform requires that the magnitude of the spectrum at 09 = 0 be 

UiUj'[.,~'ij 
Su,,j(0)= ~- , [36] 

where ~'o represents an integral time scale as seen along the particle path. 
The magnitude of this time scale can be shown to depend on the path followed by the particle 

and can be determined only by performing a full analysis that accounts for the inherent nonlinear 
nature of the problem posed. Reeks (1977) and Pismen & Nir (1978) have shown that when the 
turbulence is isotropic and there is no mean velocity gradient, the integral time scale as seen along 
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the particle path will increase with increasing particle Stokes number. However because mean 
velocity gradients tend to elevate the particle velocity variance this trend in the integral time scale 
may be offset or even reversed when a mean velocity gradient is present. 

Despite the ambiguity in the actual magnitude of the time scale as seen by the particle, it is 
possible to estimate the relative magnitude of the contributions of the terms I~, 12 and 13 to the 
velocity variance. It is sufficient to know that a time scale exists. Assuming that the velocity 
spectrum may be described using [35], the first-order contribution to the I I term is 

11 = ~ IreS ...... (O)~oe = ~ -lu~u~'r.v~oge, [37] 

where r ~  is the longitudinal integral time scale for the fluid turbulence as seen along the particle 
path and S,x ,x  (0) is the value of the fluid spectrum at the origin. 

This term is O(:(-~); therefore, its magnitude tends to decrease with increasing particle Stokes 
number. Variation of the timescale of the turbulence as seen by a particle with higher Stokes 
number would modify the rate at which the magnitude of I] actually decreases with Stokes number. 

The first-order contribution of the Reynolds stresses integral (I2) to the particle velocity variance 
can be shown to be 

2 2FG UxU,, ~)] = u / - - - - 7 ~  ~z~,,o~o + O(= . [ 3 8 ]  
L(.Oe u 

This terms is O(1), and provides a larger contribution to the particle velocity variance than the 
I1 term. This is true, irrespective of the nonlinear variation of the integral time scale of the 
turbulence as seen along the particle path. 

Finally, the first-order contribution due to the transverse fluid fluctuations is 

/3 = u  La~-Tj t - - ~ - , ' ) ~  + O ( 1 ) .  [39] 

The form of this term suggests that the particle velocity fluctuations will tend to increase linearly 
with particle Stokes number, and it is likely that the particle velocity variance could be larger than 
the fluid velocity variance when the particle Stokes number is sufficiently large. However, it is 
unlikely that the particle velocity variance will become unbounded. Examination of full nonlinear 
treatments of the particle motion such as those by Reeks (1977) indicate that a large mean particle 
velocity variance will tend to decrease the integral time scale of the turbulence spectrum as seen 
along the particle path. Consequently, it is not possible to determine whether the particle velocity 
variance increases, decreases, or approaches a constant with increasing Stokes number in a 
particular flow without performing a full nonlinear analysis. Such an analysis may be warranted 
when better information becomes available regarding the form of all the components of the velocity 
spectra in the presence of a mean shear layer. 

However, it is possible to conclude that the streamwise velocity variance of the particle will tend 
to be much larger than the transverse velocity variance, because the transverse fluctuations will be 
on the order of the Ii term contributing to the streamwise velocity variance which is O(a-I). By 
examining the relative orders of magnitude of the terms describing the three separate contributions 
to the particle velocity variance it is also possible to show that when the particle Stokes number 
is large, the influence of the fluid velocity gradient on the particle behavior can be extremely 
important. 

The relative orders of magnitude of the three terms contributing to the particle streamwise 
velocity variance arc 

l-~ = t \o~o1 UxUx'rzx) tkfl / u-d-~'rzx) 
and 

,_2 ,4,, 
[1 UxUx "t ~x  .) UxUx "C ~x  ) 

It is likely that the integral time scales describing the streamwise and transverse velocity 
correlations, and the integral time scale describing the Reynolds stresses as seen along the particle 
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path are all of comparable magnitude. Likewise the magnitude of the fluid velocity variances and 
the Reynolds stresses are of comparable order. Consequently, the relative orders of magnitude of 
the terms become 

T, = t k /J 
and 

These relations indicate that when the product ~t(G/oge) > 1, the influence of the mean fluid 
velocity gradient is more important in determining the streamwise particle velocity variance than 
the direct effect of the turbulent fluid velocity fluctuations in the streamwise direction. In very dilute 
particulate flows, the particles cannot affect the fluid flow field and the ratio (G/oge) is not affected 
by the presence of the particles. Consequently, there will be some critical magnitude of the particle 
Stokes number above which the presence of the mean velocity gradient cannot be neglected during 
analysis of the particle motions. Above this particle Stokes number, analyses in which the effect 
of the mean velocity gradient is neglected will provide predictions of the particle velocity variance 
which are qualitatively incorrect. 

The new type of particle behavior described is important for two reasons. First, it suggests a 
physical mechanism which can explain numerous experimental observations in which the stream- 
wise particle velocity variance is observed to exceed the transverse fluctuations. These include those 
by Rogers & Eaton (1990), where observed streamwise particle velocity fluctuations exceeded the 
fluid velocity fluctuations. 

The behavior described in this analysis also directly affects the understanding of turbulence 
development in particulate flows. Analyses, such as those by Elghobashi & Abou-Arab (1983), 
generally indicate that the interaction of the fluid turbulence with the particles leads inevitably to 
an additional dissipation term in the fluid kinetic energy equation. However, an extension of the 
analysis of the particle motion can be performed to show that the variance of slip between the 
particle velocity and the fluid velocity (i.e. AWx) can exceed the fluid velocity variance. It can also 
be shown that the particle interaction term appearing in the kinetic energy equation proposed by 
Elghobashi & Abou-Arab (1983) can lead to the creation of additional fluid turbulent kinetic energy. 

A physical explanation of the phenomena predicted here can be provided by considering the 
action of an "average" eddy on the motion of particles in the flow. When the rate of shear is 
positive, the eddies with negative transverse velocity tend to have positive fluctuating streamwise 
velocity, hence the negative fluid Reynolds stresses. Likewise, a particle at a location yp > 0 would, 
on average, have a larger positive velocity relative to a particle located at yp = 0. Thus, when caught 
in a strong downward eddy and carried to yp = 0, a particle arriving from above, will, on average, 
have excess streamwise velocities relative to the local mean particle velocity. For a particle arriving 
from below, the scenario is reversed, leading to negative velocities. As a consequence, the total 
velocity variance, averaged over particles arriving from above and below, is larger than that 
measured when there is no fluid shear. 

The effect described is more pronounced for particles with large Stokes numbers. Particles with 
infinitesimal Stokes numbers will adjust to the velocity of the eddy very rapidly and thus arrive 
at yp with the velocity statistics characteristic of the fluid. Those with large Stokes numbers do not 
adjust quickly to the velocity of the fluid and will retain their excess velocity for finite lengths of 
time. At sufficiently large Stokes numbers, the particles may retain a velocity difference long after 
the eddy itself has decayed in strength, leading to enhanced particle velocity variances. 

5. C O N C L U S I O N S  

From the above discussion, two conclusions may be drawn regarding the streamwise velocity 
variance: 

(i) The magnitude of the streamwise velocity variance of solid particles suspended 
in air is elevated by the presence of mean fluid velocity gradients, while the 
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(ii) 

magnitude of the transverse fluctuations is relatively unaffected. The parameters 
governing the degree to which the particle streamwise velocity variance is 
enhanced are: (1) the particle Stokes number, ~ = ogc/fl, which is the ratio of the 
characteristic frequency of the energy-containing eddies to the particle cutoff 
frequency; and (2) an enhancement parameter G/~oe which describes the influence 
of mean velocity gradients relative to that of the fluid turbulence fluctuations on 
the particle motion. The magnitude of the streamwise particle velocity variance 
increases proportionally with increases in either of these two parameters. 
At large Stokes numbers, the random interaction of a suspended particle with 
the mean fluid velocity gradients dominates the motion of the particle and may 
lead to a streamwise particle velocity variance which exceeds that predicted in 
the absence of shear. In general, the difference between the velocity variance 
predicted in the absence of mean velocity gradients and that which occurs in the 
presence of mean velocity gradients can be very large. More importantly, the 
results of the analyses indicate that when the particle Stokes number is large, 
analyses that ignore the presence of the mean velocity gradients will provide 
qualitatively incorrect predictions of the particle velocity variance. This implies 
that analyses that account for the full nonlinear behavior of the particle dynamic 
equation should also include the existence of the mean velocity gradient, 
particularly when the particle Stokes number is large. 
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A P P E N D I X  

Evaluation of  the Integrals Jr ,  Je  and J 3 for Small Stokes Number 

Determination of the particle velocity variance to the turbulence field requires evaluation of the 
integrals appearing in [30-32]. Asymptotic expressions for the response of a particle with a small 
Stokes number are developed here. The turbulence spectrum is assumed to be of the form suggested 
by Tennekes & Lumley (1972), as described in [23-25]; the limits form as the flow Reynolds number 
approaches infinity is used in this analysis. That is, it is assumed that Co = 3n/4 and o~e/to d = 0. 

The first integral to be evaluated is 3"~ which provides the streamwise velocity fluctuation in the 
absence of mean velocity variations. A similar integral appears in [10], which describes the 
transverse velocity variance. Substitution of the spectrum to be evaluated into the first integral [30] 
yields 

J I  -- 2u -' fo = 1 

 co[fo' , ] = 3 n  1 +  2--~ d t3+ (l+a2o32)o32do3 . [A.1] 

This may be integrated using the following identities: 

f dx tan-I(ctx) [A.2] 1 + ~2x2 a 

and 

Resulting in 

f dx - 1 = - a t a n - ' ( ~ x ) .  [ A . 3 ]  X2(1 + ~2X2) X 

An approximation that is valid for small particle Stokes numbers and infinite flow Reynolds 
numbers can be obtained by substituting the Taylor series expansion for the tangent of a small 
quantity: 

Gt 3 

tan-l(~) = • - ~ + " "  [A.5] 

and by recognizing that for large values of a the limiting value of the inverse tangent is n/2. 
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These substitutions allow approximation evaluation of the expression for J i  using: 

. l  + 9 + • 
This approximation is valid if the flow Reynolds number is sufficiently large to cause the quantity 
0rOOd/tOe to approach infinity and if the particle Stokes number is ,~ 1. The first two terms of this 
asymptotic expression are used in the main text to describe the qualitative effect of the presence 
of mean velocity gradients on the particle velocity fluctuations. 

The contribution of the Reynolds stress to the streamwise velocity variance was shown to be 
represented by a second integral in the form: 

0¢2(~) = 2UxUy-l f f  toe (1 + ~2e32)2 ~*(Suxuy (e3)) de3. [A.7] 

If it is assumed that the cross-spectrum can be described functionally using the form suggested 
by Tennekes & Lumley (1972) for the turbulence spectrum, which is modified by replacing the 
covariance UxUy with the velocity variance, u 2, then this integral may be written as 

2c0rr, o,o + fo ,o, o,e t 
, J f 2 (~ )  ~--- 3n LJo (1 + or2 +e32) 2de3 (l + ~t2e32)2e32de3 [A.8] @ 

d l  

The integrals may be evaluated by recognizing the following two standard integrals: 

f dx I x  1 ] [ x 1 ] X2(1 ~2X2)2 -- + =t tan-l(ax) - =t 2 2(1 -'{- a2X 2) "3!- ~ tan-I(ax) [A.9] 

and 
f dx x 1 

(1 + ~2x2)2 = 2(1 + ot2x 2) ''1- tan-l(ctx)' 

SO 

3g 2 1 - - - ~ + - -  + 2 ~  1 ~¢ 

+ 30t [ tan-I(~t)-  tan(~tC°d')l\coe/d + ct 2 
rod) 

VOd/ t . 

[A. 10] 

[A.1 l] 

This may be approximated using the expression 

3n 
J2(~t) = 1 + -~- • + O (~t 2). [A. 12] 

As for the previous approximation of J r ,  this relation to J2 holds if the flow Reynolds number 
is sufficiently large that the quantity ~coa/o~e~oo and if the particle Stokes number oc ,~ 1. 

The first term in this relation is used in the discussion of the behavior of particles with small 
Stokes numbers. While a spectrum shape has been assumed here, it can be shown that the first term 
in the equation is unaffected by the form of the cross-spectrum, while the O(ot) and higher terms 
will be strongly affected by the shape of the spectrum. 

The third integral does not contribute to the low particle Stokes number solution, but is 
evaluated here for completeness: 

f0 ~ c°e S (o3) de3. [A. 131 °¢3(~x) = 2 u ~ - 1  (1 "4- 0~2e32) 2 UyUy 

This integral can be evaluated in a manner identical to J2,  and can be represented using the 
relation 

3n 
o¢3(~) = 1 + ~ -  ~ + O (~ 2). [A. 14] 


